Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
When ecological and evolutionary dynamics occur on comparable timescales, persistence of the ensuing eco-evolutionary dynamics requires both ecological and evolutionary stability. This unites key questions in ecology and evolution: How do species coexist, and what maintains genetic variation in a population? In this work, we investigated a host-parasitoid system in which pea aphid hosts rapidly evolve resistance toAphidius erviparasitoids. Field data and mathematical simulations showed that heterogeneity in parasitoid dispersal can generate variation in parasitism-mediated selection on hosts through time and space. Experiments showed how evolutionary trade-offs plus moderate host dispersal across this selection mosaic cause host-parasitoid coexistence and maintenance of genetic variation in host resistance. Our results show how dispersal can stabilize both the ecological and evolutionary components of eco-evolutionary dynamics.more » « less
-
ABSTRACT Priority effects, where the order and timing of species arrival influence the assembly of ecological communities, have been observed in a variety of taxa and habitats. However, the genetic and molecular basis of priority effects remains unclear, hindering a better understanding of when priority effects will be strong. We sought to gain such an understanding for the nectar yeastMetschnikowia reukaufiicommonly found in the nectar of our study plant, the hummingbird‐pollinatedDiplacus(Mimulus)aurantiacus. In this plant,M.reukaufiican experience strong priority effects when it reaches flowers after other nectar yeasts, such asM.rancensis. After inoculation into two contrasting types of synthetic nectar simulating early arrival ofM.rancensis, we conducted whole‐transcriptome sequencing of 108 strains ofM.reukaufii. We found that several genes were differentially expressed inM.reukaufiistrains when the nectar had been conditioned by growth ofM.rancensis. Many of these genes were associated with amino acid metabolism, suggesting thatM.reukaufiistrains responded molecularly to the reduction in amino acid availability caused byM.rancensis. Furthermore, investigation of expression quantitative trait loci (eQTLs) revealed that genes involved in amino acid transport and resistance to antifungal compounds were enriched in some genetic variants ofM.reukaufii. We also found that gene expression was associated with population growth rate, particularly when amino acids were limited. These results suggest that intraspecific genetic variation in the ability of nectar yeasts to respond to nutrient limitation and direct fungal competition underpins priority effects in this microbial system.more » « less
-
Abstract Pulsed fluxes of organisms across ecosystem boundaries can exert top‐down and bottom‐up effects in recipient food webs, through both direct effects on the subsidized trophic levels and indirect effects on other components of the system. While previous theoretical and empirical studies demonstrate the influence of allochthonous subsidies on bottom‐up and top‐down processes, understanding how these forces act in conjunction is still limited, particularly when an allochthonous resource can simultaneously subsidize multiple trophic levels. Using the Lake Mývatn region in Iceland as an example system of allochthony and its potential effects on multiple trophic levels, we analyzed a mathematical model to evaluate how pulsed subsidies of aquatic insects affect the dynamics of a soil–plant–arthropod food web. We found that the relative balance of top‐down and bottom‐up effects on a given food web compartment was determined by trophic position, subsidy magnitude, and top predators’ ability to exploit the subsidy. For intermediate trophic levels (e.g., detritivores and herbivores), we found that the subsidy could either alleviate or intensify top‐down pressure from the predator. For some parameter combinations, alleviation and intensification occurred sequentially during and after the resource pulse. The total effect of the subsidy on detritivores and herbivores, including top‐down and bottom‐up processes, was determined by the rate at which predator consumption saturated with increasing size of the allochthonous subsidy, with greater saturation leading to increased bottom‐up effects. Our findings illustrate how resource pulses to multiple trophic levels can influence food web dynamics by changing the relative strength of bottom‐up and top‐down effects, with bottom‐up predominating top‐down effects in most scenarios in this subarctic system.more » « less
An official website of the United States government
